Observing chemical reactions in ultra slow motion
At ultra-low temperatures, molecules have so little energy that, in effect, their reactivity is slowed down.

A chemical reaction, simply stated, is the conversion of reactants into products. Consider the following simple chemical reaction where nitrogen dioxide decomposes into nitric oxide and oxygen.
This reaction, in reality, is believed to progress in two steps as shown below
However, only the products
Researchers have now come closer to achieving this quantum-state control by directly observing transient intermediates in a chemical reaction. They achieved this feat by cooling down the reaction to almost “absolute zero degree kelvin”. At this ultra-low temperatures, molecules have slow little energy that, in effect, their reactivity is slowed down. Therefore, an otherwise transient intermediate will become stable for a longer time in ultra-cold conditions.
Researchers trapped potassium-rubidium gas molecules in a chamber at an extremely low temperature of only kelvin or 500 nanokelvin. In this chamber, gas molecules were constantly reacting with each other. researchers were able to detect the intermediate molecules for the first time along with the reactants and products as per the following reaction.
According to the author’s who performed these experiments and published it in Science, this research opens up many avenues. Specifically, in quantum mechanics which is a field of science that is used in engineering and machine designing.